5,512 research outputs found

    Who knows it is a game? On strategic awareness and cognitive ability

    Get PDF
    We examine strategic awareness in experimental games, that is, the question of whether subjects realize they are playing a game and thus have to form beliefs about others’ actions. We conduct a beauty contest game and elicit measures of cognitive ability and beliefs about others’ cognitive ability. We show that the effect of cognitive ability is highly non-linear. Subjects below a certain threshold choose numbers in the whole interval and their behavior does not correlate with beliefs about others’ ability. In contrast, subjects who exceed the threshold avoid choices above 50 and react very sensitively to beliefs about the cognitive ability of others

    CW and pulsed electrically detected magnetic resonance spectroscopy at 263 GHz/12 T on operating amorphous silicon solar cells

    Get PDF
    Here we describe a new high frequency/high field continuous wave and pulsed electrically detected magnetic resonance (CW EDMR and pEDMR) setup, operating at 263 GHz and resonance fields between 0 and 12 T. Spin dependent transport in illuminated hydrogenated amorphous silicon p-i-n solar cells at 5 K and 90 K was studied by in operando 263 GHz CW and pEDMR alongside with complementary X-band CW EDMR. Benefiting from the superior resolution at 263 GHz, we were able to better resolve EDMR signals originating from spin dependent hopping and recombination processes. 5 K EDMR spectra were found to be dominated by conduction and valence band tale states involved in spin dependent hopping, with additional contributions from triplet exciton states. 90 K EDMR spectra could be assigned to spin pair recombination involving conduction band tail states and dangling bonds as dominating spin dependent transport process, with additional contributions from valence band tail and triplet exciton states.Comment: 8 pages, 4 figure

    THE NORDIC MARKET: SIGNS OF STRESS?

    Get PDF
    The supply shock that hit the Nordic electricity market in 2002-2003 put the market to a severe test. A sharp reduction in inflow to hydro reservoirs during the normally wet months of late autumn pushed electricity prices to unprecedented levels. We take this event as the starting point for analysing some potential weaknesses of the Nordic market. We conclude that fears regarding supply security and adequacy are likely to be unfounded. Nevertheless, as inherited over-capacity is eroded, and new market-based environmental regulation takes effect, tighter market conditions are to be expected. It is then crucial that retail markets are fully developed so as to allow consumers to adequately protect themselves from occurrences of price spikes.Production; Pricing; and Market Structure; Size Distribution of Firms; Firm Performance: Size; Diversification; and Scope; Retail and Wholesale Trade; e-Commerce; Air Transportation; Organizational Behavior; Transaction Costs; Property Rights; Oligopoly and Other Forms of Market Imperfection.

    Perfect NIZK with Adaptive Soundness

    Get PDF
    This paper presents a very simple and efficient adaptively-sound perfect NIZK argument system for any NP-language. In contrast to recently proposed schemes by Groth, Ostrovsky and Sahai, our scheme does not pose any restriction on the statements to be proven. Besides, it enjoys a number of desirable properties: it allows to re-use the common reference string (CRS), it can handle arithmetic circuits, and the CRS can be set-up very efficiently without the need for an honest party. We then show an application of our techniques in constructing efficient NIZK schemes for proving arithmetic relations among committed secrets, whereas previous methods required expensive generic NP-reductions. The security of the proposed schemes is based on a strong non-standard assumption, an extended version of the so-called Knowledge-of-Exponent Assumption (KEA) over bilinear groups. We give some justification for using such an assumption by showing that the commonly-used approach for proving NIZK arguments sound does not allow for adaptively-sound statistical NIZK arguments (unless NP is in P/poly). Furthermore, we show that the assumption used in our construction holds with respect to generic adversaries that do not exploit the specific representation of the group elements. We also discuss how to avoid the non-standard assumption in a pre-processing model

    Considerations on the frequency resource of professional wireless microphone systems

    Get PDF
    This Paper presents the results of spectral observations in the UHF TV Bands IV and V from 470 MHz up to 862 MHz with focus on the TV-Channels 61 to 63 and 67 to 69. Concerning the discussions on citet{WRC} this frequency range is in great demand of several applications and is usually treated as a "white space" in the TV-Bands. According to typical scenarios, two different spectral loads will be presented considering the requirements of professional wireless microphone receivers with respect to in-band intermodulation

    On Notions of Security for Deterministic Encryption, and Efficient Constructions Without Random Oracles

    Get PDF
    The study of deterministic public-key encryption was initiated by Bellare et al. (CRYPTO ’07), who provided the “strongest possible” notion of security for this primitive (called PRIV) and constructions in the random oracle (RO) model. We focus on constructing efficient deterministic encryption schemes without random oracles. To do so, we propose a slightly weaker notion of security, saying that no partial information about encrypted messages should be leaked as long as each message is a-priori hard-to-guess given the others (while PRIV did not have the latter restriction). Nevertheless, we argue that this version seems adequate for many practical applications. We show equivalence of this definition to single-message and indistinguishability-based ones, which are easier to work with. Then we give general constructions of both chosen-plaintext (CPA) and chosen-ciphertext-attack (CCA) secure deterministic encryption schemes, as well as efficient instantiations of them under standard number-theoretic assumptions. Our constructions build on the recently-introduced framework of Peikert and Waters (STOC ’08) for constructing CCA-secure probabilistic encryption schemes, extending it to the deterministic-encryption setting as well

    Quantum authentication and encryption with key recycling

    Get PDF
    We propose an information-theoretically secure encryption scheme for classical messages with quantum ciphertexts that offers detection of eavesdropping attacks, and re-usability of the key in case no eavesdropping took place: the entire key can be securely re-used for encrypting new messages as long as no attack is detected. This is known to be impossible for fully classical schemes, where there is no way to detect plain eavesdropping attacks. This particular application of quantum techniques to cryptography was originally proposed by Bennett, Brassard and Breidbart in 1982, even before proposing quantum-key-distribution, and a simple candidate scheme was suggested but no rigorous security analysis was given. The idea was picked up again in 2005, when Damgård, Pedersen and Salvail suggested a new scheme for the same task, but now with a rigorous security analysis. However, their scheme is much more demanding in terms of quantum capabilities: it requires the users to have a quantum computer. In contrast, and like the original scheme by Bennett et al., our new scheme requires from the honest users merely to prepare and measure single BB84 qubits. As such, we not only show the first provably-secure scheme that is within reach of current technology, but we also confirm Bennett et al.’s original intuition that a scheme in the spirit of their original construction is indeed secure

    On the Parallel Repetition of Multi-Player Games: The No-Signaling Case

    Get PDF

    Complete Insecurity of Quantum Protocols for Classical Two-Party Computation

    Get PDF
    A fundamental task in modern cryptography is the joint computation of a function which has two inputs, one from Alice and one from Bob, such that neither of the two can learn more about the other's input than what is implied by the value of the function. In this Letter, we show that any quantum protocol for the computation of a classical deterministic function that outputs the result to both parties (two-sided computation) and that is secure against a cheating Bob can be completely broken by a cheating Alice. Whereas it is known that quantum protocols for this task cannot be completely secure, our result implies that security for one party implies complete insecurity for the other. Our findings stand in stark contrast to recent protocols for weak coin tossing, and highlight the limits of cryptography within quantum mechanics. We remark that our conclusions remain valid, even if security is only required to be approximate and if the function that is computed for Bob is different from that of Alice.Comment: v2: 6 pages, 1 figure, text identical to PRL-version (but reasonably formatted
    • …
    corecore